Everyday human activities such as building a house on a hill by a stream, laying a network of telephone conduits, navigating the solar system, require plans that can work. Planning any such undertaking requires the development of thinking about space. Each development involves many steps of thought and many related geometrical constructions on spaces. Because of the necessary multistep nature of thinking about space, uniquely mathematical measures must be taken to make it reliable. Only explicit principles of thinking (logic) and explicit principles of space (geometry) can guarantee reliability. The great advance made by the category theory / theory of naturality invented 60 years ago by Eilenberg and MacLane permitted making the principles of logic and geometry explicit; this was accomplished by discovering the common form of logic and geometry so that the principles of the relation between the two are also explicit. They solved a problem opened 2300 years earlier by Aristotle with his initial inroads into making explicit the Categories of Concepts. In the 21st century, their solution is applicable not only to plane geometry and to medieval syllogisms, but also to infinite-dimensional spaces of transformations, to "spaces" of data, and to other conceptual tools that are applied thousands of times a day. The form of the principles of both logic and geometry was discovered by categorists to rest on "naturality" of the transformations between spaces and the transformations within thought.
Discussion about this post
No posts